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Wave Motions in Stratified Fluids by a Translating Plate

Sang Woo Joo*, Min Soo Park
School of Mechanical Engineering, Yeungnam University,
Gyeongsan 712-749, Korea

Surface and interfacial waves in two superposed horizontal inviscid fluids of finite depths are

studied. The flow is induced by translating a vertical rigid plate with a prescribed velocity.

Analytical solutions that accurately predict the motion of the free surface and the interface are

obtained by using a small-Froude-number approximation. Three different velocities of the plate

are considered, while flows induced by any arbitrary motion of the plate can be easily analyzed

by a linear superposition of the solutions obtained. It is shown that pinching of the upper layer

can occur for a sufficiently thin upper layer, which leads to its rupture into small segments. Other

interesting phenomena, such as primary and secondary wiggles generated on the interface near

the wavemaker, are discussed.
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Nomenclature
. Ratio of lower to upper layer thickness
. Gravitational acceleration

. Dimensionless surface tension

. Time-dependent velocity of the plate

. Dimensionless plate velocity

. Froude number

. Surface elevation

. Ratio of lower to upper layer density

> Velocity potential

. Surface tension coefficient
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- Dimensionless frequency of plate translation

1. Introduction

Analyzing flows with a free surface can be
more demanding than those with fixed boundaries
due to the extra effort of determining the location
of the free surface which is unknown a priori. Ad-
ditional difficulties exist when a partially submerg-
ed structure translates in the fluid because the
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flow near the contact line that the free surface
makes with the structure usually is not scaled with
a fixed length scale of the problem.

A generic problem for the flow with a free sur-
face and a surface-piercing body is the wave-
maker problem, where a vertical plate translates
in an inviscid horizontal fluid with a prescribed
velocity. Since the early work by Peregrine (1972),
who reported the apparent singularity at the con-
tact line, many researchers, including Chwang
(1983) and Lin (1984), have contributed to this
disputable problem. The first local solution valid
near the contact line is obtained by Roberts (1987),
and a uniformly valid solution that matches with
the self-similar local solution near and the outer
solution away from the contact line is presented
by Joo et al.(1990).

Wavemaker problems for stratified fluids can
be quite involved owing to the added complexities
with the internal or interfacial waves. Rhodes—
Robins (1994) and Shrief et al.(2003), among
others, report on wave motions in a two-layered
liquid. Joo and Park (2005) extend the initial
wavemaker problem of Joo et al.(1990) to two
layers with infinite depth, and show uniformly
valid solutions for the free surface and the inter-
face motions.
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In this study flows induced by a vertical wave-
maker in two fluid layers of finite depths are
studied. The rigid bottom and the wavemaker
reaching the bottom prevent the displaced fluids
from leaving behind the translating wavemaker,
and thus generate qualitatively different dynamics
from the ones in infinite depth with a finite wave-
maker draft. We report the resulting flow of the
two layers with precise predictions of the free
surface and the interface motions.

2. Formulation

Formulation of the problem is done by a straight-
forward extension of that for a single-layer fluid
of Joo et al.(1990), and is presented with a mini-
mal detail below. Descriptions obvious from figures
or the nomenclature provided will not be repeated
in the text.

A two dimensional inviscid flow is generated
from rest by a horizontal motion of the wave-
maker, as shown in Fig. 1. Conservation of mass
for each layer gives equations for the velocity
potentials as

PR+ P =0 for x >s(t), —1<y<pg?® (1)

A+ P =0 for x >s(t), pP<y<—1 (2

A
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Fig. 1 Configuration for a two-layer wavemaker
problem

where (gd))'? and d, are used as the velocity and
the length scales, respectively. The Cartesian co-
ordinate system (x, y) is located at the initial
wavemaker position, so that the location of the
wavemaker is at x=s(%).

Boundary conditions on rigid surfaces are

pP=au(t) on x=s(t) (3)
¢P=au(t) on x=s(t) (4)
pP=0 on y=—1 (5)

where the Froude number ¢ is defined depending
on the prescribed wavemaker velocity.

At the interface between the upper and the
lower fluids, the normal-stress jump, continuity
of velocity, and the kinematic condition are im-
posed :

B+ (B4 9 + 7

1 2 2
—o[pP TN 10| (o
_ T177§clyg 5 on y:”u)
(142873
¢ — PP =8P ¢ on y=1@ ;
B =7+ g07 on y=7 7
where the nondimensional interfacial tension
T=—% (8)

 owgd?

At the free surface between the upper fluid and
the air, the boundary conditions are

¢(tz)+i(¢gcl)2+¢§}2)2> +77(2):%2£3
2 (14782 (9)
on y=h+7®
¢P=12+¢29P on y=h+2®  (10)

where

T= pz‘;dz (11)

Initially, both fluids are at rest and the interfaces
are planar, so that

PpV=¢@=0 when <0 (12)
7P=79@=0 when <0 (13)

It is assumed here that static contact angles are 90
degrees at both contact lines.
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3. Analysis

We expand all dependent variables in simple
power series in @, and substitute these into the
governing system above. The leading-order equa-
tions resulting from this small-Froude-number
asymptotics are, after dropping the order indices,

PR+ ¢ =0 for x>0, —1<y0 (14)

B+ ¢ =0 for x>0, 0<y<h (15)

¢P=u(t) on x=0 (16)

¢pP=u(t) on x=0 (17)

¢P=0 on y=—1 (18)

7"=¢y on y=0 (19)

H=4 on y=0 20

pP+ 7P —p(¢P+7Y) — TinR=0 (1)
on y=0

7P=¢P on y=h (22)

PP+ 7P —Tp%=0 on y=h (23)

In solving the above system for ¢®, ¢®, 2P, and

2)

7@, we first decompose ¢ into three parts :

Fnx Sil’l kn
2u(t) [ cosh(ky+k)
T Jo  Fcosh(k)
+¢*V(x, v, t)

(n+0.5) . The series and the Fourier
integral on the right-hand side satisfy the Laplace

$—u) 3l
)

0s kxdk (24)

where k,=

equation and all boundary conditions except on
the interface, where it becomes zero. The remain-
ing part $*® then enables the solution to satisfy
the interface conditions. Similarly for ¢® we set

¢P= _4ull). E}O k%e"‘””‘ sin kny +¢*®
2u(t) [ecosh(ky—Fky/2) (25)
T S K cosh(kh/2) kxdk
+¢*@(x, v, t)
where kn= (2m—1) 7/ h. The series and the Fou-

rier integral, together satisfy the boundary condi-
tions on the wavemaker and at the interface be-
tween the upper and the lower fluids.

Substituting the above expressions into the gov-
erning system reveals that ¢*® and ¢*® both
satisfy the Laplace equation,

P*R+d*H=0 for x>0, —1<y<0  (26)

¢* B+ ¢*H=0 for x>0, 0<y<h  (27)

homogeneous boundary conditions on the wave-

maker,

?*® on x=0 (28)

@*? on x=0 (29)

and homogeneous boundary condition on the bot-
tom surface,

$*$ on y=—1 (30)

The decompositions Egs. (24) ~ (25) also guar-

antee the homogeneous boundary condition
¢*? on y=0 (31)

Considering these, we seek for the solutions ¢®
and ¢® as Fourier cosine integrals :

¢*<1):_/0'WA(/€, t) cosh[k(y+1) Jcos kxdk (32)

¢*<2>:'/0‘°°c(k, t)cosh ky cos kxdk  (33)

1)

The solutions for 7% and 7® then are also in

Fourier integrals :

= /0 "Bk, t)cos kxdk (34)

7;‘2)2/0‘00D(k, t) cos kxdk (35)

The Fourier coefficients A, B, C, and D are ob-
tained by applying the remaining four boundary
conditions, one dynamic and one kinematic con-
ditions each for the interface (y=0) and the free
surface (y=h).

In obtaining appropriate equations for the
Fourier coefficients by eliminating Fourier inte-

grations, it is necessary to note the following
identities :
vl e 1 (ﬂ)
nZ:E) % € ﬂlntanh 4 (36)
—lntanh<%>=£ cos kx tanh % a];k (37)
as in Gradshteyn & Ryzhik (1980). From the

condition Eq. (19) we then get
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ksinh RA (B, t) =B (k, t) (38)
while the condition Eq. (20) gives

_2U=0) W) | (1_p) Ak, £)cosh

wk? (39)
—0C:(k, t) + (1—p+ T1k*) B(k, t) =0
The kinematic condition Eq. (21) yields
kA (k, t)sinh(kh+k) (40)

+kC (&, t)sinh(kh) =D,
and finally the dynamic condition Eq. (22) gives

—Zfﬂéf) +cosh(Eh+k) As (k. £)

+cos (kh) Ci+ (1+ ok D (&, t) =0

(41)

The Fourier coefficients B and D can be eli-
minated between equations Egs. (38) ~ (39) and
Egs. (40) ~ (41), respectively, yielding equations
for A and C. We then eliminate C to obtain a
single fourth-order ordinary differential equation

for A:
@ Awut @Aut+asA=an (42)
where
ar=cosh k cosh(kh) + o sinh %k sinh(kh) (43)

az=k(1— pTik?) sinh % cosh(%h)
+%(1+ T3£?) [ o sinh cosh (k4) (44)
+cosh £ sinh(%4)

as=F (1— o+ TiF?) (1+ T3k sinh k sinh (k) (45)

20— (D)

N 7k cosh &
Zum/(t) _ p
ﬂkzcoshk<l ot cosh(kh))

tanh (k%)
(46)

Eq. (42) has a general solution

A=Ak, t)+ca(k)sin(Bit) +c2(k)cos (Bit)

+c1(k)sin(Bet) +ci(k) cos (Bot) 47

where
Bi=
82:< axt+Ja—4aias >1/2

2a1

( ax2— azs—4aias >”2

2a

Here, A, is a particular solution of Eq. (42) for a
given ¢, and ¢;’s (1=1,2,3,4) are determined from
the initial conditions.

The initial conditions for interface elevations
7 and @ can be converted into those for ¢®,
and ¢® through Eq. (21) and Eq. (22). The ap-
propriate initial conditions are then

#D=0 on GP=pg® (49)
at y=0 and
¢®=0 on ¢$P=0 (50)

at y=nh. These conditions are easily converted in
turn into those for A (%, 0). The solution for A
(%, t) then is completely determined, after which
that for C(k, ¢) and consequently those for B
and D are obtained ; the time-dependent confi-
gurations for the interface and the free surface are
determined in terms of Fourier integrals.

We note that the wavemaker velocity is not
restricted by the solution method. In this study we
consider three different wavemaker motions, con-
stant acceleration, constant velocity, and periodic
oscillation. The constant acceleration provides
insight into the start-up behavior of wavemaker-
induced flows, as many time-dependent motions
can be approximated for small time as ramp velo-
city as a first-order approximation. The constant
velocity allows us to look into the behaviors for
impulsive motions and for long time because the
wavemaker speed is bounded. It can model the
final motions of many translating surface-pierc-
ing objects. The oscillatory motion is important
for itself, but can become more useful because any
general wavemaker motion can be described by
superposing harmonic motions with different fre-
quency.

4. Constant Acceleration

When the wavemaker starts from rest and in-
creases linearly in time with a constant accelerat-
ion @, the Froude number ¢ and the dimension-
less wavemaker velocity become

QZ% and u(t)=¢ (51)

respectively. For the present analysis to be valid,
the acceleration of the wavemaker must be much
smaller than the gravitational acceleration. From
the initial conditions, we get
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A(k, 0)=0 (52)

[

_ 2 4P
Aclk, O)_ﬂkz/lcoskLl e coshkh} (53)

Ay (k, 0)=0 (54)

e tanh k(g tank ()
—o*—ptanh?(kh) +1)]
_2n(p+1)tanh £ (55)
kX cosh b
20[ (o tanh k+tanh(kh)) + 7 tanh £]
kX cosh k cosh(kh)

Attt(k, 0) =

where A=I1+ptanh ktanh(kk), n=1—o+k
Ty, and yo=1+F*T.
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Figure 2 shows the interface configurations at a
small time (#=0.1) when two fluid layers are of
the same thickness (%=0). The density ratio o
is varied from 0.01 (upper fluid much lighter) to
0.99 (upper and lower fluid similar in density).
Considering that the density is here the only
physical property that distinguishes the two in-
viscid fluids and that only hydrodynamically sta-
ble stratifications are required for the initial con-
ditions taken, we do not take density ratios equal
or higher than unity. When the density ratio is
very small as in Fig. 2(a), the upper fluid behaves
like passive air for the lower fluid, so that the
motion of the lower fluid is similar to that of a
single fluid layer (no upper fluid). The configu-
ration of the interface approaches that obtained
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Fig. 2 Surface configurations for the ramp velocity at =0 for 73=2X107%, T;=2T;, and k=1
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by Joo et al. (1990) . As the density ratio increases,
the motion of the interface is decreased, while the
free-surface elevation is also decreased. If the
density ratio is further increased toward unity, the
motion of the interface is further decreased, so
that the interface configuration becomes almost
planar. The free-surface elevation is also de-
creased, but its configuration resembles that for a
single fluid, with appropriate rescaling of length.
The elevation of the free surface (and of the in-
terface) seems to have both upper and lower
bounds as the density ratio approaches zero and
unity, respectively.

In Fig. 3, the density ratio is fixed at 0=0.8, a
representative value for water and a typical pet-
roleum oil. The thickness ratio % is varied from

0.025

0.0z

n
—— 0015
a
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00054 0.05 0.1
X
(a) £=0.01
0.014
n
o.012} 2
001}
n
0008k
a
0.006 - 11]
0.004 -
0.0024 0.5 0.1
X
(c) h=0.5

unity to 0.01. As the thickness of the upper fluid
decreases, the elevation of the interface becomes
more and more pronounced, and for very small 7,
as in Fig. 3(a), the interface configuration again
recovers that of a single fluid. The free-surface
elevation on the other hand decreases with the
decrease in the thickness ratio.

Figure 4 shows the free-surface and interface
configurations at two different times for three
different combinations of interfacial tension. At a
given time, the elevations at the contact-line are
lower with the increase of the surface tension.
Away from the wavemaker the effect of surface
tension becomes less important, and the surface
configurations for all values of surface tension
become identical. The figures for f=1 clearly
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X
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oozt T
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0.008
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Fig. 3 Surface configuration for the ramp velocity when #=0.1 for 73=2X107%, 7,=2T;, and 0=0.8
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show the generation and propagation of small-
scale capillary waves near the wavemaker. The
propagation rate appears to increase with the sur-
face tension. These effects become more obvious
for a step motion of the wavemaker shown below.

In Fig. 5, the contact-line elevations (7; at x=
0) are plotted against time for various combina-
tions of thickness ratio, density ratio, and surface
tension. Fig. 5(a) shows monotonic increase in
the elevations for both contact-lines. For this
particular case, the contact-line elevation for the
free surface always exceeds that for the interface.
Fig. 5(b) shows the effect of thickness ratio on
the contact-line elevation for the free surface. In-
crease in the relative thickness of the upper layer

0.01

(c) t=1
Fig. 4 Surface configurations for the ramp velocity when 0=0.8, 2=0.1 for T;=2X107% (Solid), 77=2 X 1072
(Dash), T:=2X10"! (Dash-Dotted), and T2=2T1

provides increase in the contact-line elevation,
which becomes more conspicuous as time pro-
gresses. The effect of density ratio is plotted in
Fig. 5(c). As seen in previous figures, the contact-
line elevation for the interface decreases as the
density of the upper layer increases. In Fig. 5(d)
the difference in the two contact-line elevations is
plotted for three different combinations of surface
tension. For all cases shown, the contact-line
elevation for the free surface is always higher. For
small time this extra elevation for the free surface
decreases with surface tension. At larger times,
however, the trend is reversed ; the surface tension
promotes the extra contact-line elevation for the
free surface.

0.012

(d) t=1
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12

0 25 5 75 10

(c) h=0.1, T1=2X107%, and T>=27T; with p=0.001
(Solid), p=0.8 (Dash), and 0=0.99 (Dash-
dotted)

15

0

(b) 0=0.8, T1=2X 107%, and 7>=27; with 2=0.001
(Solid), ~2=0.1 (Dotted), and A=1 (Dash-
dotted)

1.2

08

0.4

0 1 1 L

Fig. 5 Contact-line elevations for the ramp velocity

5. Impulsive Constant Velocity

The Froude number and dimensionless wave-
maker velocity become

and u(¢) =1 (56)

o= V
Jgd
respectively, for a wavemaker impulsively set in
motion with a constant velocity V. The initial
conditions are here

2

Ak, 0)= 7k* cosh %

(57)

0 2.5 5{ 7.5 10
(d) #=0.1 and p=0.8 with T,=2X10"° (Solid),
T1=2X10"% (Dash), 7,=2X10"' (Dash-
Dotted), and T,=2T,
Ak, 0)=0 (58)
2 tanh
Aull, 0) ==Lt (k1) —1) = 7] -
27,0 tanh (kh)
kA cosh k cosh(kh)
Au(k, 0)=0 (60)

Figure 6 shows the interface and free-surface con-
figurations at a small time (#=1) for three dif-
ferent values of the density ratio. For clarity the
local configurations near the wavemaker are
plotted in a magnified scale in figures (b), (d),
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and (f). While other trends are relatively un-
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changed from those for the ramp velocity, devel-
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Fig. 6 Surface configurations for the step velocity at =1 when p=0.8, T1=2X107% and T2=2T)
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opment of wiggles near the wavemaker is no-
table when the upper layer is sufficiently thin. As
seen in Fig. 6(a), for a sufficiently small thickness
ratio / the free surface can meet the interface, and
a “pinching” can occur that makes the thin upper
layer rupture (into isolated drops) at least tem-
porarily.

The wiggles generated by the impulsive motion
of the wavemaker can be observed for all values
of 7 as time progresses, as seen in Fig. 7. The
thickness ratio is now taken up to #=2. Far away
from the wavemaker where the wiggles have not
reached, the configurations, or wave motions, for
the interface and the free surface seem in phase.
Near the wavemaker, however, the free surface
and the interface exhibit wiggles of their own that

1.5

0 5 10 15 20
X

(¢) h=1

do not appear to communicate with each other.
This can cause the rupture of the upper layer if it
is thin enough, as seen in the previous figure.

In Fig. 8, the contact-line elevations for the
interface and the free surface (771‘ at x=0) are
plotted against time for three different combina-
tions of surface tension. The contact-line for the
free surface elevates monotonically with time, re-
aches a maximum, and then oscillates to converge
eventually to a finite value. Surface tension re-
tards the initial monotonic increase in contact-
line elevation, and decreases the maximum eleva-
tion. Surface tension increases the time to reach
the maximum elevation, and decreases the fre-
quency of the subsequent oscillations. At a given
time the contact-line elevation thus does not mono-

2.5

(d) h=2
Fig. 7 Surface configurations for the step velocity at =10 when 0=0.8, T1=2X107% and T:=2T)
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The Froude number is defined as in the previous
section, and the normalization of the wavemaker
velocity gives

u (t) =sin wt (62)

where the non-dimensional frequency of the
wavemaker oscillation is =2 (%4/g) 2. The ini-
tial conditions are then

A(k, 0)=0 (63)
i 2w o |4
Ak, 0) = 7k?A cosh k {1 P cosh kh} (64)
Ay (b, 0)=0 (65)
Attit<k7 0)
2% (p-1) 2o 2on(p+1)tanh k

" aktdcoshk 7k Acosh k cosh(kh) kA cosh b
o 24, 12 2 P
TR cosh i [ o tanh k (o’ tanh?(kh) — o' — o tanh® (kh) +1)]
2w00[ 72(ptanh k+tanh(kh)) + 72 tanh k]

(66)

(b)
Contact-line elevations for the step velocity
when ©0=0.8, 2=0.1, 73=2X10"% (Solid),
T1=2x10"* (Dash), 77=2X%X10"% (Dash-
Dotted), and 72=2T)

Fig. 8

tonically decrease with surface tension. The con-
tact-line elevation for the interface appears to
be more involved than that for the free surface.
Within the time shown it does not seem to con-
verge to a terminal value, but rather continues
to oscillate with a multiple wave motion (short
waves on top of a longer wave). It is also to be
noted that the time for the maximum elevation
decreases with surface tension, in contrast to that
for the free surface.

6. Flows Due to Harmonic
Wavemaker Velocity

A wavemaker motion of greater practical inter-
est is a periodic oscillation, for which the velocity
of the wall is given as

U(t)=1Vsin [(%)égt}, =0 (61)

kA cosh k cosh (kh)

In Fig. 9, the configurations of the free surface
and the interface are plotted for four different
thickness ratios while other parameters, including
the frequency w=1, are fixed. Wave fronts with
decaying amplitudes far away from the wave-
maker are reminiscent of the initial startup pro-
cess, and the wave motions with relatively regular
amplitudes that follow are consistent with the
forcing frequency of the wavemaker. As /4 in-
creases a secondary development of wave motions
for the interface near the wavemaker is seen clear-
ly, which is supposedly analogous to the secon-
dary development of wiggles in the previous sec-
tion. This secondary wave has higher frequency
than that of the wavemaker. It is also interesting
to note that unless the upper layer is sufficiently
thick it is likely to rupture, as seen in figures (a),
(b), and (c). As the upper-layer thickness in-
creases the wave amplitudes at the interface de-
crease, making it less likely to rupture, as seen in
figure (d).

In Fig. 10, the thickness ratio is fixed at 2=2,
and the density ratio is varied instead. Fig. 10(c)
thus is identical to Fig. 9(d). Given the same
thickness, the wave amplitudes at the free surface
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and the interface decrease with the density ratio,
and the rupture becomes less likely. It must be
noted here that the secondary wave development
at the interface disappears as the density ratio ap-
proaches either zero or unity. It is easily under-
stood if we realize that either limit represents a
single-layer system.

The contact-line elevations for the interface
and the free surface are plotted in Fig. 11 as for
other wavemaker motions in the previous sec-
tions. Perfectly harmonic oscillations are shown
for both contact-lines. In all cases tried (not
shown here) the contact line for the free surface
always stays higher in position than that for the
interface, so that no pinching, or rupture, is ob-

1.5
i
1y
05k
n
U_
a
05.—
-1F
-I.SG
n
a

I} 40 BO

(c) =1

served on the wavemaker.

Flows induced by an arbitrary motion of the
wavemaker can be easily analyzed by a linear
superposition of the solution for the harmonic
velocity. An arbitrary wavemaker velocity can be
approximated by a finite Fourier sine series

N
u(t) :Zlai sin ‘wt (67)

where N is a sufficiently large integer. For a
single-layer wavemaker problem Joo et al.(1990)
constructed a solution for the free-surface config-
uration with the wavemaker motion taken from
that for a wave tank experiment. The solution was

favorably compared with the experimental data.

(d) h=2

Fig. 9 Surface configurations for the harmonic velocity at =60 when p=0.8, w=1, 71=2X107%, and 7=2
T:. For the interface (Solid) and the free surface (Dash)
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Fig. 10 Surface configurations for the harmonic velocity at #=60 when 2=2, w=1, T1=2X107% and T>=2
T1. For the interface (Solid) and the free surface (Dash)
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Fig. 11 Contact-line elevations for the harmonic
velocity when 0=0.8, 2=2, w=1, T1=2X
107%, and 7>=2T;. For the interface (Solid)
and the free surface (Dash)

For flows with two layers the same degree of
accuracy can be expected in principle.

7. Concluding Remarks

Flows generated by a vertical wavemaker are
studied for two vertically stratified horizontal
layers. The solution method applied yields uni-
formly valid solutions for the transient free sur-
face and interface configurations. Useful results
are obtained with the inviscid and the small-
Froude-number approximations.

It is generally known that viscous effects are
confined to small areas near boundaries in studies
of water waves, and so the inviscid approximation
is proven to provide satisfactory results. Inclusion
of viscous effects, including the shear stress on
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rigid body and interfaces, invites the viscous mov-
ing-contact-line complications, and is not pursu-
ed in the immediate future. The small-Froude-
number restriction, however, needs to be relaxed
for practical applications. A new method that
facilitates a parametric study on the Froude num-
ber must be sought. If one decides to use a com-
putational method, extreme care must be exercised
near the contact line, where a single length scale
(thus the spatial resolution) and an explicit time
integration may break down.
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